
1

Microservice Architecture for the Enterprise
How to take a design-based approach to microservice architecture
that addresses culture, organization, methodology and technology.

2

For the uninitiated, a microservice is defined as an independently deployable
component of bounded scope that supports interoperability through message-
based communication.

But, it’s not just about individual microservices—it’s about how microservices
work together. From this perspective, we look at “microservice architecture”—a
style of engineering highly automated, evolvable software systems made
up of capability-aligned microservices. This definition comes from the book
Microservice Architecture, published by O’Reilly.

What does this mean for businesses? Rather than building monolithic
applications that require long development cycles and big releases,
organizations are creating applications out of multiple, lightweight microservices
that facilitate smaller, more frequent changes and independent scalability.

In the pages that
follow, we’ll cover how
your organization can
improve availability
and system safety
while speeding
up and scaling
software delivery
using a microservice
architecture.

What are microservices?

http://transform.ca.com/API-microservice-architecture-oreilly-book.html

3

Why microservices in the enterprise?

While such companies
are digital first, large
enterprises with legacy
systems to support
can also benefit
from a microservice
architecture. And though
the challenges—such
as monolithic systems,
legacy technology,
skills gaps and cultural
issues—might be great,
the rewards can be far
greater.

Companies like Amazon and Netflix popularized the use of microservices, and
other pioneers—such as Gilt (now part of HBC Digital) and SoundCloud—use
them to build massive scalability and decrease time between releases.

Netflix started using a service-oriented approach to software engineering that
we now call microservices over 10 years ago. In a 2006 interview, Amazon CTO,
Werner Vogels, explained the benefits:

“We can scale our operation independently, maintain
unparalleled system availability and introduce
new services quickly without the need for massive
reconfiguration.”

Gilt uses microservices to lessen dependencies between teams, allowing
the company to get code more quickly into production. SoundCloud, after
expanding as a company, progressed from using agile to continuous delivery to
microservices to improve lead and delivery times that it was accustomed to in its
start up days.

http://queue.acm.org/detail.cfm?id=1142065

4

The difference between
these is that you’ll never
get rid of the essential
complexity. In fact, software
solutions are
a great way to try to deal
with essential complexity.
On the other hand,
accidental complexity is
something that we would
hope to reduce as much as
possible.

What are the challenges?

From an enterprise perspective, much of what we’re dealing with when
introducing microservices and trying to get advantages from microservices is
the inevitability of software complexity. And software complexity is certainly a
subject that’s been studied much longer than we’ve been talking about the buzz
term “microservices.” Software complexity goes back almost to the origins of
software engineering.

Fred Brooks describes two types of complexity in his paper “No Silver Bullet:
Essence and Accident in Software Engineering”:

•	� Essential complexity—The complexity of the software’s functional scope
and the problems it solves (e.g., correlating and analyzing large amounts
of data in real time). There are some problems we are trying to solve with
software that are inherently complex and we can’t do anything about it.

•	� Accidental complexity—The complexity of the software’s implementation
details (e.g., the languages, processes and messages used to do the work).
This is the complexity we create in trying to solve the problem.

5

So, how do we deal with essential complexity? There’s a reason domain-driven
design has become resurgent with the microservices movement. Domain-driven
design, at a high level, is a very effective way of modeling the systems which
then map nicely into microservice architectures.

This is possible because the topology of the implemented system closely
resembles the model of the system’s “essence.” In other words, there’s a close
resemblance between a model of the essential complexity of a system and a
model of a microservice architecture. It makes microservice architecture an
intuitive way of solving these essential complexity problems.

On the other hand, accidental complexity in a microservice architecture can be
minimized through automation and distribution via continuous delivery tooling,
cloud native platforms, containers and APIs.

What we see with
microservices is now,
instead of the developers
building their code and
having to merge it with
a monolithic application,
they can break things
down and work on the
individual microservices,
eliminating a lot of the
accidental complexity.
Their job gets simpler
and they can just focus
on building a service.

How do we overcome the
challenges of building an enterprise
microservice architecture?

6

A Design-Based Approach to
Microservice Architecture

When looking at how to approach the introduction of microservices to an enterprise, taking a
design-based approach is very helpful. This approach can be broken down into five different steps
of design:

Outcome design.
Look at your goals
and ask, “Why are
you doing this?” It’s
not enough to say:
“Everybody’s on the
microservice
bandwagon, let’s
jump on too.” It’s
important that you
understand the
value points you’re
going after.

System design.
Examine how you
identify the scope
of the system that
you’re going to be
architecting. This is
about decomposing
the domain.

Service design.
Once you have a
picture of what your
domain is and what all
its services are going
to be, look at the
design of all those
individual services to
make sure they’re built
in the right way, so
that they can evolve
and interact in the
correct way for the
system you want to
build.

Foundation design.
The previous steps
have been very
technology-agnostic.
So now, you need to
look at the underlying
capabilities—the
technological tools
and platforms that
will be required to
build out the system
best-suited to the
needs of your
organization.

Organizational
design. Look at the
organization itself—
the people side.
How do you make
sure that the culture
and methodologies
you’re using, and
even the
organizational
structure, match
what you hope to
achieve?

We’ll dig into these a little deeper in the pages that follow.

51 2 3 4

7

Outcome Design: Define Goals and Principles

There are some key
types of microservice
goals such as agility,
composability, runtime
and scalability. Out of
these, you can decide
what are the principles
you want to use to
incent these behaviors.

STEP 1 is about defining measurable goals and developing associated principles.
First, you want to define where you are today and where you want to be. Ask:

•	 How can we reduce our release cycles?

•	 How can we introduce more microservices?

•	 How can we retire or depreciate unused services that may be out there?

Naturally, not everything can be concrete and measurable. Sometimes, it’s
important to define higher-level principles about the way things should be done
to incent good behavior. Defining these principles helps you build a common
cause, which is very important. We want this so that we can have alignment
without having to have a lot of coordination across the organization. So, these are
constraints to help you with those hard-to-measure goals.

1

8

System Design: Choose an Initial Scope Then
Decompose the Domain

Once you’ve defined your goals and principles, look at the best place to start
working towards achieving them. In STEP 2, you want to first identify the target
domain and start breaking that down into sub-domains in a bounded context—
which are linguistic boundaries where everyone speaks the language. Then, start
to define the interaction between those bounded contexts within your domain.

This is a process that’s helped through visual exercise. One approach is to use the
domain-driven design “Context Mapping” approach that breaks down a domain
into its sub-domains and bounded contexts. Since the accepted approach to
understanding a system is to focus on the relationship between its components,
you need not go deeper than the context map if you want a basic representation
of a microservice system.

This context could be the decomposition of a monolithic application or the
service interactions of an initiative. The only way to coherently build a large
organization’s system of microservices is to do so piece by piece, context by
context. Along the way, these contexts can be combined to project the complete
picture, if such a picture is even needed.

Once you have the
bounded contexts,
you can start to define
services for your solution
within. And once you’ve got
a good map, you can start
enumerating the services
that you want
in the organization.

RELATED READING
Designing a System of
Microservices

2

http://www.apiacademy.co/designing-a-system-of-microservices/

9

3
You can expect the stages
of system design and service
design to be quite iterative
at first until things settle
down and the boundaries
become clear. But, it’s
important to remember that
the system design is going
to be enterprise-wide at the
system maintainer level and
the service design is going
to be much closer to the
individual developers and
the small teams that will
be building the individual
microservices.

CONSUMER TASKS

QUALITIES

Queries Commands Event
Subscriptions

Event
Publications

Service
• Task

Consumer
• Task

LOGIC/RULES DATA

DESCRIPTION

INTERFACE DEPENDENCIES

Service Design: Design the Services

In STEP 3, you want to take an outside-in approach. Start with:

•	 What are the interactions between services?

•	� Who is going to want to consume my services and what are they going
to consume?

•	 What other services am I going to be dependent on?

Then, you start to think about other external concerns like the quality of
service, SLAs, the security situation and versioning—all the things that are
going to affect the consuming services as well as the services you depend on.
These are going to be the most important factors in designing the service.

From there, you should start to investigate the logic, the rules and finally, the
data you need. It’s a common mistake to start with the data and work
outwards. That’s dangerous and it leads to tight coupling.

RELATED READING
The Microservice Design Canvas

3

http://www.apiacademy.co/the-microservice-design-canvas/

10

In addition, APIs are:

•	� A living part of the system, unlike some documentation that
lives outside the system and might be stale.

•	� A good way of bridging to service modelling through
domain-driven design. As you go from domain to bounded
context to the context map, think about your APIs as a helpful
way to map your system. It provides a way to understand the
overall system of microservices, and it contains the
appropriate level of information so you can connect the dots.

•	� A place where you can enforce security policies, provide
composition of services for aggregation, universally monitor
service levels and document services through API definition
languages, like OpenAPI. This is important because when you
have a microservice, you can no longer rely on something like
an app server to provide all the normalized information, such
as logging and security.

Another thing to think about when
you’re designing the services is to dig
into the APIs because they’re
extremely helpful and have a lot of
value when it comes to microservices.
APIs provide a technological way of
expressing the capabilities of your
system.

If you didn’t know anything about a
system and you were only to look at
the API definition for the services that
live within the system, you would get
a pretty good idea of what functional
capability is in that system to the
point where you could have business
and technical conversations, bridging
that gap using the API definitions.

Service Design (cont’d): The Importance of APIs3

11

Now it’s time to think about the required capabilities.
These could be technical capabilities or they could be
standards and guidelines you want to abide by. But, be
careful not to go so deep as to be restrictive to your
teams.

To assist, use this capability model that outlines some of
the main categories you may want to consider. Not to
say every microservice environment needs all these
capabilities, but you can use the model to think about
the important capabilities you need in your system.

If you’re focused on reducing development time, you
may spend more time looking at design and
development capabilities. Whereas if your focus is more
on scalability and runtime efficiency, you may be
looking more deeply into security and mediation and
platform capabilities.

 Mediation
• Routing
• Service Discovery
• Rate Limiting
• Orchestration
• Transcoding

Foundation Design: Identify Needed Capabilities

Microservices

 Development
• Design Tools
• Test Tools
• API Discovery
• �Container Creation

• IDEs

 Security
• Access Control
• �Identity

Management
• PKI

Deployment
• �Container Orchestration
• �CD Pipelines
• �Repositories
• �Release Management

 Hosting
• �Container Hosting
• �IaaS/PaaS/FaaS
• �Data Management
• �Storage

 Monitoring
• Logging
• Correlation
• Analytics
• �Anomaly Detection
• �Event Execution

4

12

Organizational Design: Align the Organization,
Culture and Architecture

Now we get into the human
side of microservices: the
organizational, cultural and
methodological capabilities.
When introducing something
like continuous delivery, it’s
more than just a technology
tool introduction. It’s the
whole process change that
impacts the way people do
things. And it’s important to
align your team structure so
you have cross-functional
teams that can own their
services end-to-end. Also,
you want to look at how you
can change culture.

On the methodological side, you’ll want to adopt agile practices. You want
to be able to automate everything.

On the organizational side, you want to break down silos into teams that are
cross-functional—product owners and developers, and even business leads in
the same team—so you can be more aligned with the business outcomes.
There will still be the need for teams that go across the organization and
support those cross-functional teams, but rather than dictating to those
teams, it’s better to take a more incentive-based approach to teams where
you’re enabling those teams and providing tools and services to them, to let
them function and fly on their own.

Finally, on the cultural side, if you have digital teams that are counterpoint to
their IT teams, it’s time for a change. While change can be viewed as bad,
which slows down releases, try thinking about becoming efficient at change
and embracing it, so that you’re doing more frequent, smaller changes,
which are going to have less impact on the system and are much easier to
roll back if things do go wrong.

5

13

Move to Microservices and Accelerate
Your Digital Transformation

You want to deliver new innovations, release apps faster and take advantage of new opportunities, but
legacy applications and infrastructure are holding you back. Transition to a modern architecture by
decomposing monolithic applications into agile microservices—independently created, managed and
scaled. Your business will be able to act more quickly and developers will love the easy access to APIs that
give them the freedom to focus on customer experience.

Start With Microservice
Strategy and Design

CA,a Broadcom Company
has the API Academy, an
educational site where you
can learn about API strategy
and design, as well as
microservice architecture
and the education enterprise
architects need to build
better APIs and
microservices, improve
software delivery, and
execute on broader digital
strategies.

Read API Academy
Microservice Best Practices

Low-Code Microservice
Creation

Live API Creator is the
only automated, low-code
microservices development
solution and works up to 10
times faster than other
approaches. It creates and
exposes domain-driven
microservices and REST APIs
as application backends,
providing access to
orchestrated data and
functionality from both new
and legacy systems.

Learn more about Live API
Creator

Orchestrate and Secure
Microservices

The award-winning API Gateway
and Microgateway enable
architects and developers to
manage discovery, orchestration
and transformation in a broad
array of microservices deployment
patterns. They are containerized
and deployable in Docker® and
you’ll also be able to apply best-
in-class OAuth security and
authentication to protect your
business.

Learn more about API Gateway &
Microgateway

http://www.apiacademy.co/tag/microservices/
http://www.apiacademy.co/tag/microservices/
http://ca.com/createapis
http://ca.com/createapis
https://www.ca.com/us/products/ca-api-gateway.html
http://www.ca.com/microgateway
http://ca.com/microgateway

14

Start building microservices today with a trial of Live API Creator.
Get started at ca.com/createapis.

Learn how Layer7 can help you with your
microservice architecture.
Visit ca.com/microservices.

Application Architecture
Built for Change

For product information please visit us at ca.com/api

Copyright © 2019 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
Broadcom, the pulse logo, Connecting everything, CA Technologies and the CA technologies logo are among the
trademarks of Broadcom.
BC-0539EN 05.25.19

Broadcom Inc. (NASDAQ: AVGO) is a global technology leader that designs, develops and supplies
a broad range of semiconductor and infrastructure software solutions. Broadcom’s category-
leading product portfolio serves critical markets including data center, networking, enterprise
software, broadband, wireless, storage and industrial. Our solutions include data center networking
and storage, enterprise and mainframe software focused on automation, monitoring and security,
smartphone components, telecoms and factory automation. For more information, go to
www.broadcom.com.

http://ca.com/createapis
http://ca.com/microservices
http://ca.com/api
http://www.broadcom.com

