
111 1

A Guide to REST
and API Design

22

If the Only Tool You Have
is a Hammer...
In his 1966 book “The Psychology of Science,” American psychologist Abraham
Maslow tackled the idea that those in the field of psychology needed to
approach treatment from multiple perspectives, to take on new ideas, and not
just continue using the same theories and techniques created by Freud and his
followers so many years ago. Acknowledging that changing your point of view
can be difficult, Maslow wrote “[I]t is tempting, if the only tool you have is a
hammer, to treat everything like a nail.” We have all had this experience. We
get so used to the way things have been done in the past, we sometimes don’t
question the reasons for doing them.

It may seem curious to refer to psychology in a work on REST and API Design, but
it works to illustrate two distinctive points: (1) that all design decisions, regardless of
whether they pertain to software or architecture, should be made within the context of
functional, behavioral, and social requirements—not random trends; (2) when you only
know how to do one thing well, everything tends to look identical.

In his dissertation, “Architectural Styles and the Design of Network-based Software
Architectures,”1 Roy Fielding defines Representational State Transfer (REST):

“Consider how often we see software projects begin with the adoption of the latest fad
in architectural design, and only later discover whether or not the system requirements
call for such an architecture.”

Don’t have time to read Fielding’s full dissertation? That’s OK. We created this high-level
overview with you in mind. To get started, let’s take a look at REST in some detail.

“If all you have is
a hammer, then
everything looks like
a nail.”

—ABRAHAM MASLOW,
The Psychology of Science

1 Architectural Styles and the Design of Network-based Software Architectures

https://www.ics.uci.edu/%7Efielding/pubs/dissertation/fielding_dissertation.pdf

33

Style vs. Standard
An architectural style is an abstraction—not a concrete thing. Take, for example, a
Gothic cathedral. The cathedral is different from the Gothic architectural style. The
Gothic style defines the attributes or characteristics you would see in a cathedral built
in that style.

Comparatively, the National Institute of Standards (NIST) and the National Electrical
Codes (NEC) are governing bodies that produce rules we recognize as standards. If
you failed to wire a building correctly, the place could burn down to the ground. People
often get confused between standards—that which we know is right or wrong—and
styles; a particular mode of expression.

On the Internet, REST is a style and Hypertext Transfer Protocol (HTTP) is a standard.
REST relies on stateless, client-server cacheable communications protocols like HTTP
to facilitate application development. By applying REST design principles to a protocol,
such as HTTP, developers can build interfaces that can be used from nearly any device
or operating system.

WHAT’S YOUR STYLE?
Three common Web
architecture styles are:

•	Tunneling (Simple Object
Access Protocol—SOAP)

•	Objects (Create/Read/
Update/Delete—CRUD)

•	Hypermedia
(Representational State
Transfer—REST)

Watch this video2 to
understand the key
features of common
architectural styles and
decide which best fits
your needs.

2 API Design, Lesson 201: Web API Architectural Styles, API Academy.

https://www.youtube.com/watch?v=683ywv3sLGA&feature=youtu.be
https://www.youtube.com/watch?v=683ywv3sLGA&feature=youtu.be

44

Styles Are Described
by Constraints
 An architectural style is described by the features that make a building or other structure
notable and identifiable. The characteristic forms of Gothic architecture, for example,
include the pointed arch, the rib vault, buttresses, large windows which are often
grouped, rose windows, towers, spires, pinnacles, and ornate facades.

“Here is one of the few
effective keys to the
design problem—the
ability of the designer to
recognize as many of the
constraints as possible—his
willingness and enthusiasm
for working within these
constraints. Constraints of
price, of size, of strength, of
balance, of surface, of time
and so forth.”3

—CHARLES EAMES, Eames Design

3 https://quotesondesign.com/charles-eames-5/

REST DERIVATION BY STYLE CONSTRAINTS

Similarly, REST is described by a set of
architectural constraints that attempt
to minimize latency and network
communications while, at the same time,
maximizing the independence and scalability
of component implementations. The six
constraints of REST include:

1. 	Client-Server—requires that a service
offer one or more operations and that
services wait for clients to request these
operations.

2.	Stateless—requires communication
between service consumer (client) and
service provider (server) tobe stateless.

3.	Cache—requires responses to be clearly
labeled as cacheable or non-cacheable.

4.	Uniform Interface—requires all service
providers and consumers within a REST-
compliant architecture to share a single
common interface for all operations.

5.	Layered System—requires the ability to
add or remove intermediaries at runtime
without disrupting the system.

6.	Code-on-Demand (optional)—allows logic
within clients (such as Web browsers) to be
updated independently from server-side
logic using executable code shipped from
service providers to consumers.

Multiorg

Replicated

On-Demand

RR CS

CSS$ LSS COD

LS VM U

RESTLCODC$SSLC$SSC$SS

Stateless

Reliable

Separated
Layered Programmable

Uniform Interface

Simple

Visible

IntermediateProcessing

Shared

Mobile

Extensible Reusable

ScalableCacheable

https://www.eamesoffice.com/the-work/design-q-a-text/

55

Connector ≠ Component
According to Fielding, “[REST] is achieved by placing constraints on connector
semantics where other styles have focused on component semantics.” His design
focuses on constraining the way things connect to each other—not the way
they operate internally—and he applies this theory to the entire network. When
building large-scale applications, the concept that the connector is not the same
as the component is often overlooked. But Fielding brings it to the forefront.

Components work to solve problems in unique ways. MySQL functions differently from
SQL server, as does CouchDB or MongoDB. The same can be said for file systems that are
UNIX-, Windows-, or Mac-based. The way you queue up information, the way you decide
when a transaction starts and ends; these are entirely local features of the component
which can be manipulated by the developer. They are the developer’s components, his/her
operating system, tools and language, and are therefore private.

Connectors, on the other hand, are public. They are a series of standardized pipes that all
developers work with. Based on Fielding’s principle, developers can be as creative or as
mundane as they want within their private components as long as they agree to transmit
information back and forth using standardized public connectors.

Keep components and connectors separate, making it easier to interchange them later on.
For example, the code you write for your Web server is designed to speak to many devices
on the public Internet. But, the code you write for your components is designed to speak
specifically to the tools you have available to you.

So, what are components?
They include:

• Databases
• File systems
• Message queues
• Transaction manager tools
• Source code

These di�er from connectors,
which include:

• Web servers
• Browser agents
• Proxy servers
• Shared cache

66

Ensuring Connectors Work Together
When building client-based applications or server-side
services, it is this matching of private components to public
connectors—wiring them up and chaining them together—
that can make development both challenging and exciting.
So, how do you ensure a connector works? How can you
design scalable applications if they’re communicating
over connectors?

The uniform interface constraint is fundamental to the
design of any REST service. It simplifies and decouples the
connectors, which enables each part to evolve independently.
Because of how the Web is used today, the four constraints
above are the essential tools that help developers realize
Fielding’s uniform interface. The next few pages explain these
tools in greater depth.

IDENTIFICATION OF
RESOURCES

URIs, URLs, and URNs
as identifiers

SELF-DESCRIBING
MESSAGES

combining metadata in
headers, as well as the body

of a message, to create a
self-descriptive response

RESOURCE
REPRESENTATIONS

media types as ways to
represent information

passed between parties

HYPERMEDIA
links and forms as a way to
describe to the client the

available actions currently
supported by the service

77

URIs for Identification
As RFC23964 describes it, “a Uniform Resource Identifier (URI) is a
compact string of characters for identifying an abstract or physical
resource.” This identifier can be realized in one of two ways, a Uniform
Resource Locator (URL) or a Uniform Resource Name (URN). URLs
(e.g. http://example.org/users/mike) are used to identify the online
location of an individual resource while URNs (e.g. urn:user:mike) are
intended to be persistent, location-independent identifiers. The URN
functions like a person’s name and a URL resembles that person’s
street address. In other words, the URN defines an item’s identity (“the
user’s name is mike”) and the URL provides a method for finding it
(“mike can be found at example.org/users/”).

The components of a URI include:

•	Scheme Name—identifies the protocol (e.g., FTP:, HTTP:, HTTPS:, IRC:)

•	Hierarchical Part—intended to hold information hierarchical
in nature

	 — �Authority—refers to the actual DNS resolution of the server
(e.g., domain name or IP address)

	 — �Path—pertains to a sequence of segments separated by a
forward slash (“/”)

•	Query—contains additional identification information that is
non-hierarchical in nature and often separated by a question
mark (“?”)

•	Fragment—provides direction to a secondary resource within
the primary one identified by the Authority and Path and
separated from the rest by a hash (“#”)

The structure of URIs

scheme authority path query fragment

URL:

URN:

foo://example.com:8042/over/there?name=ferret#nose

urn:example:animal:ferret:nose

https://tools.ietf.org/html/rfc2396

https://tools.ietf.org/html/rfc2396

88

Media Types for Representation
According to RFC20465, MIME type identifiers (media types) should
be used to “specify the nature of the data in the body of a MIME entity,
along with any auxiliary information that may be required.” MIME types
were first used for email transmissions, as is evidenced by its full name:
Multipurpose Internet Mail Extensions. Today, MIME types permit people
to exchange different kinds of data files on the Internet: audio, video,
text, images and application programs.

MIME types (or media types) identify the nature of the data and auxiliary information.
On the Web, media types also identify processing rules for the message. The MIME
type identifier string has a type and subtype separated by a slash (e.g., text/plain,
image/gif, etc.).

In addition to standard MIME type strings (e.g. application/json), identifiers can be created
using the following conventions:

•	Use vnd. as a prefix to the subtype for vendor-specific MIME types which are part of a
commercial product (e.g. vnd.bigcompany.report/json).

•	Use prs. as a prefix to the subtype for personal/vanity MIME types which are not part
of a commercial product (e.g. prs.smith.data/json).

5 https://tools.ietf.org/html/rfc2396

MIME TYPE REGISTRY

A complete list of official
MIME types assigned by
the Internet Assigned
Number Authority (IANA)
can be found HERE.

http://www.iana.org/assignments/media-types/media-types.xhtml

99

Headers+Body for
Self-Describing Messages
RFC26166 states that [in HTTP] messages consist of a start-line, zero or
more header fields (also known as “header”), an empty line (e.g., a line
with nothing preceding the CRFL) indicating the end of the header fields,
and possibly a message-body.

Each client request and server response is a message, and REST-compliant applications
expect each message to be self-descriptive. That means each message must contain all the
information necessary to complete the task. Other ways to describe this kind of message
are “stateless” or “context-free.” Each message passed between client and server can have a
body and metadata.

REST implementations also depend on the notion of a constrained set of operations that are
fully understood by both client and server at the outset. In HTTP, the operations are described
on the “start line” and the six most widely used operations in HTTP are:

•	GET—return whatever information is identified by the Request-URI

•	HEAD—identical to GET except that the server must not return a message-body in the
response, only the metadata

•	OPTIONS—return information about the communication options available on the
request/response chain identified by the Request-URI

•	PUT—requests that the enclosed entity be stored under the supplied Request-URI

•	POST—requests that the origin server accept the entity enclosed in the request as a new
subordinate of the resource identified by the Request-URI

•	DELETE—requests that the origin server delete the resource identified by the Request-URI

The first three are read-only operations, while the last three are write operations. In
HTTP, there are well-defined rules for how clients and servers are expected to behave
when using these operators. The names and meanings of the accompanying metadata
elements (headers) are also well-defined. REST-compliant applications running over
HTTP understand and follow these rules very carefully.

5 https://tools.ietf.org/html/rfc2396

SAMPLE HTTP “GET”
EXCHANGE

To retrieve a file at http://www.
somehost.com/path/file. html,
open a socket to the host www.
somehost.com, use the default
port of 80 because none is
specified in the URL, and send the
following through the socket:

GET/path/file.html HTTP/1.0

From: someuser@jmarshall.com

User-Agent: HTTPTool/1.0

[blank line here]

Sent back through the same
socket, the server should
respond with:

HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59
GMT Content-Type: text/html
Content-Length: 1354

<html>

<body>

<h1>Happy New Year!</h1>

(more file contents)

</body>

</html>

https://tools.ietf.org/html/rfc2396

1010

Links and Forms
for Hypermedia
Links and forms are used within a media type to support Fielding’s
hypermedia constraint. For example, there are a handful of affordances in
HTML and the common Web browser understands the rules for all of them.
The links and forms in an HTML message are easy to recognize, but what
might not be so clear are the processing rules, or the semantics, that are
associated with them.

Links and forms afford you the ability to take an action—they are affordances. HTML has a
well-defined set of affordances. Some affordances allow you to write data, like a form that has
the method property set to “POST.” Some affordances allow you to pull data from a remote
location to view within the current HTML document like the IMG element. The HTML A element
is an affordance for navigating to a new location on the Web.

According to Fielding, “Hypermedia is defined by the presence of application control
information embedded within, or as a layer above, the presentation of information.” For
Fielding, REST offers service providers the ability to send control information (links and forms)
to client applications across the world by sending affordances, the hypermedia controls.

For more information on H-Factors:http://amundsen.com/hypermedia/hfactor/.

H FACTORS
When comparing media types,
it can be helpful to document
the existing H Factors in a simple
visual chart. In the example, the
bottom row identifies basic
link factors—the most noticeable
hypermedia factors—while the
top two rows identify control
data factors.

Hypermedia Factors Link Support
[LE] Embedding links
[LO] Outbound links
[LT] Templated queries
[LN] Non-Idempotent updates
[LI] Idempotent updates

Control Data Support
[CR] Control data for read requests
[CU] Control data for update requests
[CM] Control data for interface methods
[CL] Control data for links

HTML

CL

CR

LE

CU

LO

CM

LT LN LI

http://amundsen.com/hypermedia/hfactor/.

1111

Software That Spans
Lifetimes
Quality physical architecture spans lifetimes. Buildings that were constructed
hundreds of years ago can be just as lively, just as useful, just as vibrant and
comforting today as they were when people first stepped inside—even when
these building are converted from their original uses, such as when churches
are transformed into museums or meeting halls into apartment buildings.
Why? Because these timeless buildings rely on universal architectural
patterns that cross space and time. An entryway is an entryway; a window a
window. How these elements are implemented is dependent on the available
materials. How they are represented is different in each local case, but they
can still be identified year over year.

In software development, the concept is the same. Sometimes software architects and
developers want to build applications that can last a long time. REST, with its set of
universal constraints (like architectural patterns), is one way of accomplishing this.

But Fielding didn’t say this is the only way to be successful. When he was writing his
dissertation, he didn’t include all the possibilities, all the answers. In fact, there were many
parts left unfinished. What Fielding did do, however, was document his approach to
creating an architectural style for networked software which was based on a identifying
a series of constraints to meet his goal of minimizing latency and maximizing scalability.
In fact, he used constraints in the same way that Charles Eames used constraints—
because they helped achieve his goal.

“The value of a well-
designed object is
when it has such a rich
set of affordances that
the people who use it
can do things with it
that the designer never
imagined.”7

—DONALD NORMAN, 1994
7 https://www.youtube.com/watch?v=NK1Zb_5VxuM

https://www.youtube.com/watch?v=NK1Zb_5VxuM
https://www.youtube.com/watch?v=NK1Zb_5VxuM&feature=youtu.be

1212

For product information please visit our website at: ca.com
Copyright © 2019 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, CA Technologies, and the CA technologies logo, are among the
trademarks of Broadcom. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
BC-XXXXEN-0719 July 24, 2019

Learn more
about the

PLEASE VISIT CA.COM/API

advantages
Layer7 API
Management

https://www.ca.com/us/products/apim/api-management.html

